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Abstract

Being an inverse problem, Full Waveform Inversion
(FWI) is subject to scaling problems due to
inappropriate choice of model parametrization. This
work puts in evidence that the choice of compressional
velocity or squared slowness parameters leads to
very different gradient expressions (for acoustic FWI),
and thus must have distinct convergence properties
(for a gradient-based algorithm). Also, an interesting
result is related to the role of the pseudo-Hessian,
which shows that either compressional velocity or
squared slowness yields the same update for small
step-lengths. This is an interesting feature expected
from a Hessian-based preconditioner, which makes
inversion result more robust and less dependent of
parametrization choice. These features are illustrated
with a numerical example using the Marmousi-2
model.

Introduction

The full waveform inversion (FWI) is becoming an
important tool to improve quantitative model parameters
of the subsurface in high resolution. It aims to use
of all information contained in the seismic data, such
as traveltime and amplitude (Tarantola, 1984). This
ensures that the seismic wave propagations, through
heterogeneous media, is modeled contemplating all wave-
modes. The numerical solution provides seismic waveform
that could be explored for the benefit for better tomographic
solutions, without the requirement to specify the seismic
phases. The results developed through this method can
be used to the improvement of migration velocity for the
seismic imaging (depth seismic migration) and possibly
to the direct interpretation of lithology. This technique is
a data-fitting procedure, in which updates iteratively the
model parameters of the subsurface, in order to minimize
the misfit between the registered data (d) and the simulated
data (u).

The FWI method relies on two main steps: a forward
problem (the algorithm is based on full wavefield two-way
modeling) and a solution of an inverse problem by the
computation of an update direction, a step length and the
evaluation of the objective function. FWI is a highly non-
linear inverse problem subject to non-uniqueness issue
and convergence to a spurious model (i.e., a local minimum

in the objective function). On top of that, the high
computational cost puts great challenges for the FWI in
industrial scale, which requires 3D simulation of large
seismic surveys.

Therefore, due to the computational power available
nowadays, FWI application on large-scale datasets has
been mainly restricted to gradient-based methods. On
the other hand, these methods, which does not include
a Hessian correction, are known to face scaling problems
(Nocedal, 2006). Thus, it is preferable to choose an
algorithm that is not sensitive to scaling, such as the
Newton method, because they can handle poor problem
formulations in a more robust fashion (Nocedal, 2006).
The problem of choice of parameters in FWI goes back to
Tarantola (1986), who has already drawn attention to the
necessity of adequately chosen parameters. The reason is
that even theoretically equivalent parametrization can lead
to distinct convergence rates in the inversion.

It is shown in this work, for the acoustic FWI, a comparison
of the inversion results using different parameterizations
to update the compressional velocity model. It is also
discussed that the preconditioning by the pseudo-Hessian
diagonal, leads to a less sensitive algorithm to the
parametrization, and a better scaling of the gradient. In
the result section, these features are illustrated with a
numerical example using the Marmousi-2 model.

Theory

The core of the FWI algorithm relies on the definition of the
forward modeling operator for the wavefield L. It can be
represented in a general form by

L(u;p) = f, (1)

where f are the external sources, u is the wavefield, that
relies on the model parameters p.

For the sake of simplicity, we will focus mainly on the
acoustic constant density case. For this simpler problem,
the forward problem operator is given by:

L
(
u;vp

)
=

1
vp2

∂ 2u
∂ t2 −∇

2u. (2)

in which u represents the pressure wavefield and vp is the
compressional velocity model.

Once the physics of the problem is defined (i.e., the
modeling operator), the FWI problem may be formulated
as a local optimization problem that seeks a model p
which minimizes an objective function value E(p). A very
popular choice for the objective function is the L2-norm of
the residual, that is, the difference between the observed
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dataset ds with the modeled wavefield us, at the shot point
xs and receiver points xr, integrated in the time-domain:

E(p) =
1
2 ∑

s∈src
∑

r∈rcv

∫
T

dt
∫

G
d3x|us(p;x, t)−ds|2δ (x−xr). (3)

The model parameter p can be updated through a gradient-
based method so to find a model that reduces the value
of the objective function. The gradient of the objective
function is defined as

∇pE(p)δp = lim
ε→0

1
ε
[E(p+ εδp)−E(p)]. (4)

However, the explicit evaluation of the right side Eq. (4) by
the finite-difference method has a prohibitive computational
cost, because it is necessary the evaluation of each
derivative model component.

An effective approach, fully described in Fichtner (2011),
Chapter 8, is to make use of the adjoint method. This
method allows to evaluate the gradient of the objective
function in a very computationally efficient way.

It can be shown, without the use of any approximation, that
the gradient of the objective function may be obtained by

∇pE(p)δp =
∫

T
dt
∫

G
d3x u† ·∇pL(u;p)δp. (5)

This means that the computation of the gradient can be
done with a modeling of u and u† for each source.

The adjoint wavefield u† is modeled through the adjoint
equation of Eq. (2):

∇uL†u† =−∇uE†
1 . (6)

where E1 is the integrand of the objective function. For the
special case of L2-norm of the residual (Eq. (3)), the right-
hand side of the Eq. (6) has as the adjoint source residual
data at the receivers position.

The local optimization methods consists in estimating the
objective function derivatives in the neighborhood of an
initial model p0. In each iteration, it is computed a
search direction hk and a step-length αk, in a way that the
model parameters update is represented by the following
expression:

pk+1 = pk +αkhk (7)

where pk is the model parameter for the kth iteration. The
step length is determined by a linear search (Nocedal,
2006). The update must guarantee the reduction of the
objective function value.

In this work, we used the steepest-descent method to
determine the search direction hk. However, one should be
aware that the gradient scaling is very dependent on the
choice of model parametrization. Therewith, we present
two distinct parameterizations for the computation of the
update of compressional velocity model (vp) in the acoustic
case.

To evaluate the gradient computation, we considered two
distinct parameterizations, described as follow:

• P-wave squared slowness (σ );

• P-wave velocity (vp);

P-wave squared slowness (σ )

The P-wave squared slowness is defined by σ = 1
v2

p
, so we

have the gradient formulation

∇σ Eδσ =
∫

T
dt
∫

G
d3xu†üδσ , (8)

Therefore, in the kth updated iteration model is given by

σk+1 = σk−αk∇σ Ek. (9)

In terms of vp, this update is given by

1
v2

pk+1

=
1

v2
pk

−αk∇σ Ek, (10)

that can be expressed as follows:

vpk+1 =
vpk√

1− v2
pk

α∇σ Ek

. (11)

For small updates, α∇σ Ek ∼ 0.05 ∗
(
1/v2

pk

)
, it is possible

to approximate the expression (11) in Taylor’s expansion,
such as

vpk+1 = vpk +
v3

pk

2
α∇σ Ek. (12)

P-wave velocity (vp)

Using vp velocity as the parameter, we have

∇vp Eδvp =
∫

T
dt
∫

G
d3x

(
− 2

v3
p

)
u†üδvp. (13)

The gradient can be represented as follows

∇vp E =− 2
v3

p
∇σ E. (14)

Hence, the kth update for the velocity parameter is

vpk+1 = vpk +α
2

v3
pk

∇σ Ek. (15)

In this way, it is apparently obvious that the gradients in
terms of squared slowness (11) and with velocity (15) are
distinct. This certainly implies in different convergence
properties for each parametrization.
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Pseudo-Hessian diagonal pre-conditioner

A secure way to mathematically verify which
parametrization (vp or σ ) leads to a better scaled
gradient is using the pseudo-Hessian as a pre-conditioner.
This approach is expected to deliver a better update the
model parameter.

The pseudo-Hessian diagonal H̃a is a rough approximation
for the complete Hessian matrix. It is given as follow

H̃a;p = ∑
s∈src

∫
T

dt
∣∣∣fvirt

s,p

∣∣∣2 (16)

and it was suggested in Shin et al. (2001) to improve the
computation of prestack migration. Here s is the source
subscript, Ns is total number of shots and fvirt

s,p is the virtual
source, defined as

fvirt
s,p =− ∂L

∂ pi
(us) . (17)

This structure modify the update for different model
parametrization. For the parametrization for the inversion
problem with vp and σ , the virtual sources are given by

fvirt
σ =− ∂L

∂σ
(u) =−ü, (18)

fvirt
vp

=− ∂L
∂vp

(u) =− 2
v3

p
ü, (19)

respectively.

Hence, the update direction for σ is given by

H̃−1
a;σ ∇σ E =

∫
T dt u†ü∫
T dt üü

, (20)

and for vp,

H̃−1
a;vp

∇vp E =
− 2

v3
p

∫
T dt u†ü(

− 2
v3

p

)2 ∫
T dt üü

=−
v3

p

2

∫
T dt u†ü∫
T dt üü

. (21)

In this way, the expressions (21) and (20) gives the
following update in terms of compressional velocity (for
small updates):

vpk+1 = vpk

(
1− v2

pk
αH̃−1

a;σ ∇σ Ek

)− 1
2 (22)

≈ vpk +α
v3

p

2

∫
T dt u†ü∫
T dt üü

(23)

= vpk −αH̃−1
a;vp

∇vp Ek. (24)

The importance of this result is that independently of
the parametrization (vp or σ ) the gradient scaled by the
pseudo-Hessian diagonal gives the same model update
(for small updates).

Results for the Marmousi-2 Model

The target model used for the proposed methodology is
the Marmousi-2 (Martin et al., 2002), shown in Fig. 1a,
representing a complex acoustic isotropic media for P-
wave velocity. We have tested the inversion scheme for a
2D noise-free synthetic dataset. It was modeled in the time
domain, considering a fixed-spread acquisition geometry
for the receivers, with 1360 receivers along the surface of
the model. In Table 1 it is presented the parameters used
for modeling and inversion.

Table 1: Modeling and inversion parameters

Model dimension 1361x281 grid points
Grid point interval (h) 10 m
Time step 1 ms
Total time step 3000 ms
Max. frequency 14.0 Hz
Initial frequency 8.0 Hz
Frequency interval 2.0 Hz
Number of shot gathers 68
Receiver interval 10 m

The inversion process was performed in the time domain.
It was used a multi-scale approach by inverting from the
lowest to a higher frequency. This is important to avoid
the convergence toward a local minimum, due to cycle
skipping (Bunks et al., 1995). It was used 4 bandwidth
of frequencies, starting from maximum frequency 8 Hz up
to maximum 14 Hz, with intervals of 2 Hz, and the velocity
model generated for a lower frequency inversion became
the input velocity model for the next frequency. For each
frequency, it was performed 10 iterations. The initial model
used for input in the inversion is represented in Fig. 1b. It
corresponds to a smoothed version of the true model by a
filter of 300m x 300m radius.

Three difference inversion schemes to update the model
parameters were realized:

• Based on the vp parametrization with the update
shown in Eq. (15);

• Based on σ parametrization with the update shown in
Eq. (12);

• Based on pseudo-Hessian diagonal correction with
the update shown in Eq. (24);

Figure 1c-e contains the final results of the FWI for different
parameterizations and in Fig. 1g is a comparison of the
velocity profiles provided by each inversion result at the
position x=8.5 km over the true and initial models. By these
results:

1. It is possible to check in Figs. 1c and 1d huge
difference of the updates below 1 km in depth
comparing the vp and σ parametrization. The σ

parametrization favored better update throughout the
whole of the subsurface, whereas the deeper part of
the model for the vp parametrization remained almost
the same as the initial model.

VI Simpósio Brasileiro de Geofı́sica



THE ROLE OF PARAMETRIZATION IN ACOUSTIC FULL WAVEFORM INVERSION 4

2. With parametrization on σ and with pseudo-Hessian
diagonal correction H̃a the velocity model Marmousi-2
was greatly recovered, being both quite similar.

3. These conclusions are seem with greater detail in
the velocity profile (Fig. 1g). All the inverted results
have a good match with the true model for depth
shallower than 1km. However, for the deeper part, the
parametrization with vp has the weaker match with the
true model and a profile closer to the initial model. On
the other hand, using parametrization on σ and H̃a are
very similar with each other and better matched with
the true model, despite of the limited iteration number
and limited bandwidth used.

These numerical results puts in evidence the importance
of the choice of parametrization for an adequate scaling
of the gradient. It is clear that the parametrization with
σ yields better inversion results and a faster convergence
than the vp parametrization. This, can be understood by
seeing the only difference of expressions (12) and (23) is
the autocorrelation term of the forward wavefield (

∫
T dt üü).

In other words, the σ parametrization has the same scaling
property of the parameter as the pseudo-Hessian update,
although it does not have the wavefield illumination factor
correction.

In fact, a possible explanation for the very close results
of the parametrization with σ and the correction by
the pseudo-Hessian is by analyzing the plot of the
autocorrelation of the forward wavefield for the last iteration
(Fig. 1f). Since, the chosen geometry of acquisition leads
to a complete illumination of the whole model, the term
(
∫

T dt üü) has influence only in the very boundary part of the
model. This small difference can be seem in the very deep
part of the velocity profile (around 2.7 km). For incomplete
acquisition geometry (not considered in this work), the
illumination factor should have a greater importance. This
is fully discussed in the original article of Shin et al. (2001).

Conclusions and Discussion

In this work it was evaluated the gradient computation
for acoustic FWI to two distinct parameterizations: the
compressional velocity vp and the squared slowness
σ . The resulting different expressions implied in distinct
convergence properties for them. It could be concluded,
that the choice of parametrization is truly important to better
update the velocity models from the inversion.

The mathematical explanation for two theoretically different
parametrization give different inversion result is due to
bad scaling property of gradient-based methods. A
more robust way to approach the problem was done by
updating the model with a pseudo-Hessian correction. With
this preconditioning, it could be shown that the update
for compressional velocity remains the same (for small
updates) using either compressional velocity or squared
slowness as the inversion parameters.

This study puts in perspective the huge role that
parametrization considerations should have in multi-
parameter inversion. In fact, with more parameters at
stake greater problems are expected to arise due to the
possibility of trade-off and cross-talk between the gradients
of different parameters (Prieux 2013 a,b). Therefore,
studies as this one should be pursued to enable gradient-

based methods (which are computationally cheap) to be
used, but with appropriate scaling for different classes of
parameters. The role and structure of the Hessian should
be relevant in this future work.
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(a) True Marmousi-2 compressional velocity model.
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(b) Initial velocity model.
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(c) Result with parametrization on vp.
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(d) Result with parametrization on σ .
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(e) Result with preconditioning by the pseudo-Hessian.
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(f) Autocorrelation of forward wavefield (
∫

T dt üü).
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(g) Velocity profile at x=8.5 km

Figure 1: The true Marmousi-2 velocity model is given on (a). The initial model for the inversion is depicted on (b). In figure (c),
is the result for the inversion using the parametrization on vp. Figure (d), is the result for the inversion using the parametrization
on σ . Figure (e), the result using preconditioning with pseudo-Hessian. Figure (f), is the autocorrelation of forward wavefield
for the last iteration, shown in Eq. (20). And Fig. (g) a velocity profile for the estimated models at the position x=8.5 km.
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